

JTEKT Bearing Painter VDR 5

Senior Design Team 515

Team Introductions

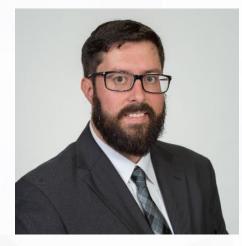
Mason Gibson Manufacturing Engineer

Wesley Jean-Pierre Mechanical Design Engineer

Max Jones Project Manager & Control Engineer

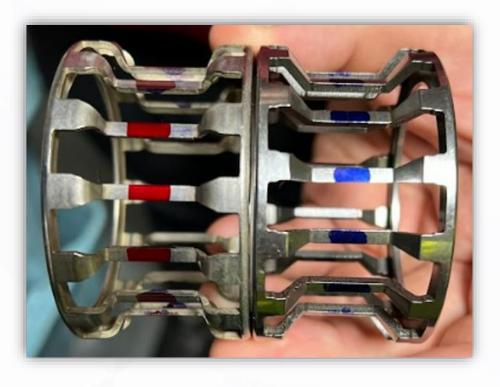
Andrew McClung Systems Integration Engineer

Anthony Wuerth Manufacturing & Design Engineer



Sponsors and Advisor

Engineering Mentor Coltin Fortner *Mechanical Engineer JTEKT North America*



Engineering Mentor Joshua Jones Senior Product Engineer JTEKT North America

<u>Academic Advisor</u> Shayne McConomy, Ph.D. Senior Design Professor

Project Objective

The objective of this project is to automate the process of painting needle bearing retainers.

Project Overview

Maximilian Jones

Team 515 – VDR 5

Key Goals

Accurately Apply Metal Paint to the Bearing

Accommodate Bearings from 7/8-2 ½ in. (Outer Diameter)

Automate Bearing Painting Process

Assumptions

Manually Loaded and Unloaded

Loaded with One Type of Bearing at a Time

A standard 120V Wall Outlet is Available

Paint With One Color per Load

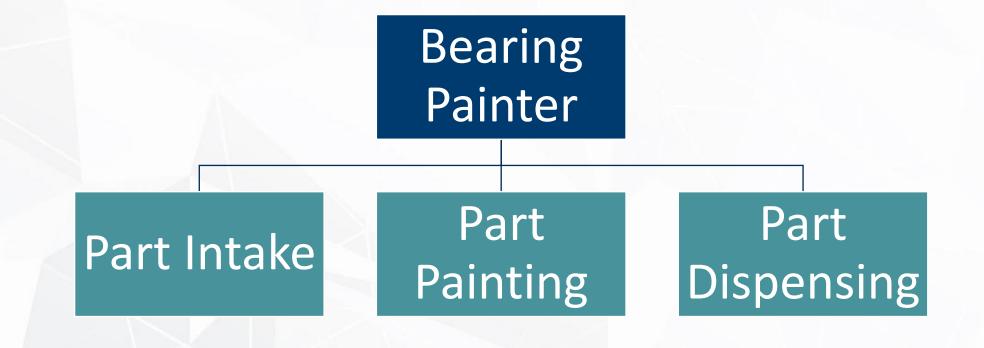
Customer Needs

Fully Automated (except loading)

Fit Into Existing Fume Hood

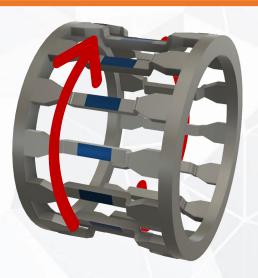
Accommodate Different Sized Bearings

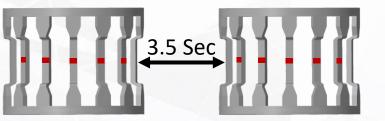
Able to Load 10 Bearings at a Time


3.5 Second Cycle Time

Paint Non-Working Surface Only

Defined Systems

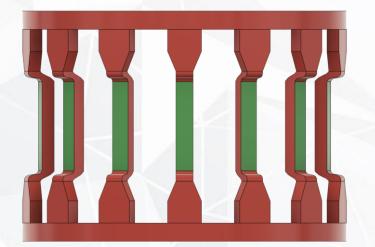

Team 515 – VDR 5

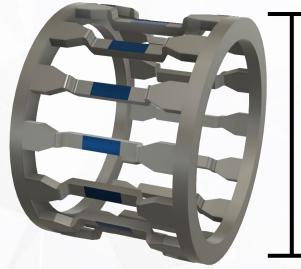

Critical Targets

Consistently paint full 360° of retainers

Cycle time of 3.5 seconds

Fit inside a pre-existing Fume Hood (2ft. X 3ft. X 3ft.)





Critical Targets

Limit Extraneous paint on working surface to 1 mm²

Accommodate retainers from 7/8 to 2 ½ inches in diameter

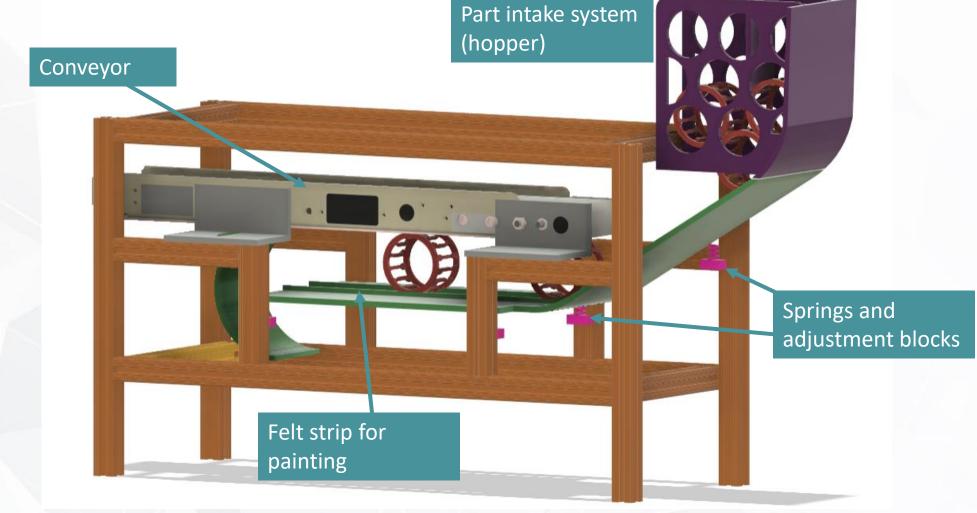
Outer Diameter

Mason Gibson

Safety & Industry Standards

- Conveyor Systems must have all access points guarded to eliminate pinch points.
- All Systems Must have an Emergency Stop Pushbutton Located near the Discharge point of the Conveyor.

- Highly flammable
- Should be used in wellventilated areas
- Excess Dykem should be disposed to the nearest hazardous waste facility


 Incoming voltage must be labeled in bright orange near the main disconnect

Team 515 – VDR 5

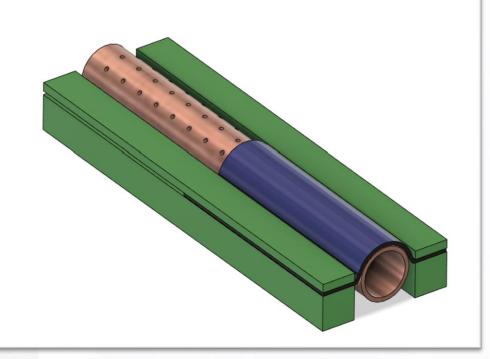
Mason Gibson

Updated CAD Model

Testing Plan

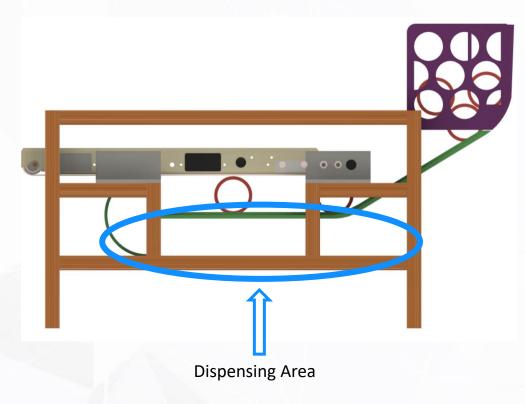
Mason Gibson

Part Intake Testing


- The ability to load and unload bearing retainers into the hopper
- Further develop timing mechanisms or lack thereof

Part Painting Testing

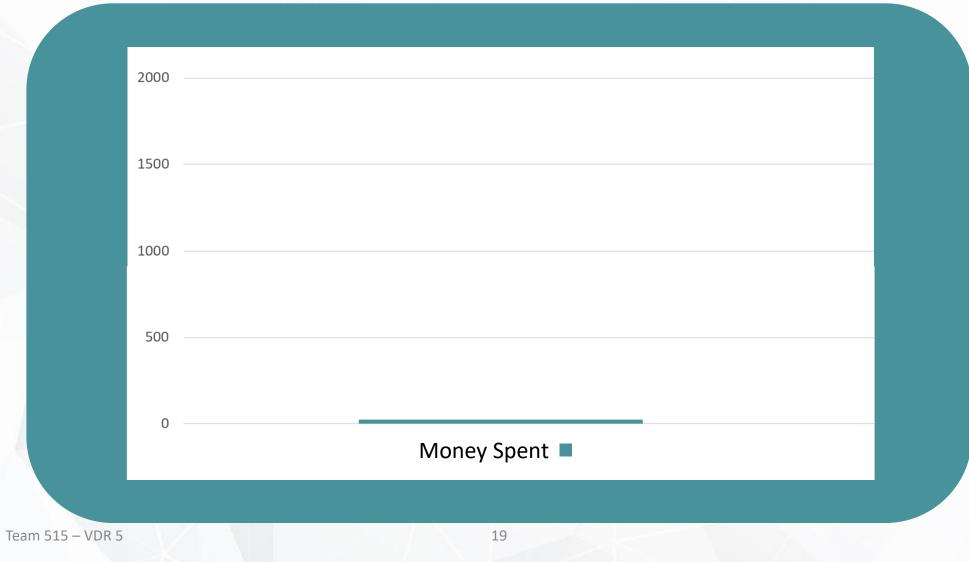
- Test ways of keeping felt applicator properly saturated during duration of the run
- Ways of cleaning painting mechanism for a change of Dykem color
- Test for optimal spring stiffness under application bed



Mason Gibson

Part Dispensing Testing

- Ensure freshly painted non-working surfaces are not tampered with
- Test to guarantee organized deposition of bearing retainers


Budget

Andrew McClung

Andrew McClung

Project Budget

Product Budget

Name	Unit Cost	Quantity	Total		
1 in. x 1 in. T-slot Aluminum Extrusion	\$5.30 /ft.	17 ft.	\$90.05		
NEMA 23 Stepper Motor	\$23.02	1	\$23.02		
QC Conveyors IS125	~ \$400	1	~ \$400		
Felt Strip, 2 in. wide, 1/16 in. thick	\$2.59 /ft.	50 ft.	\$129.52		
			\$642.59		

Andrew McClung

Future Work

Continue Building Painting System

Develop Side Rails

System Testing

Further Improve CAD Model

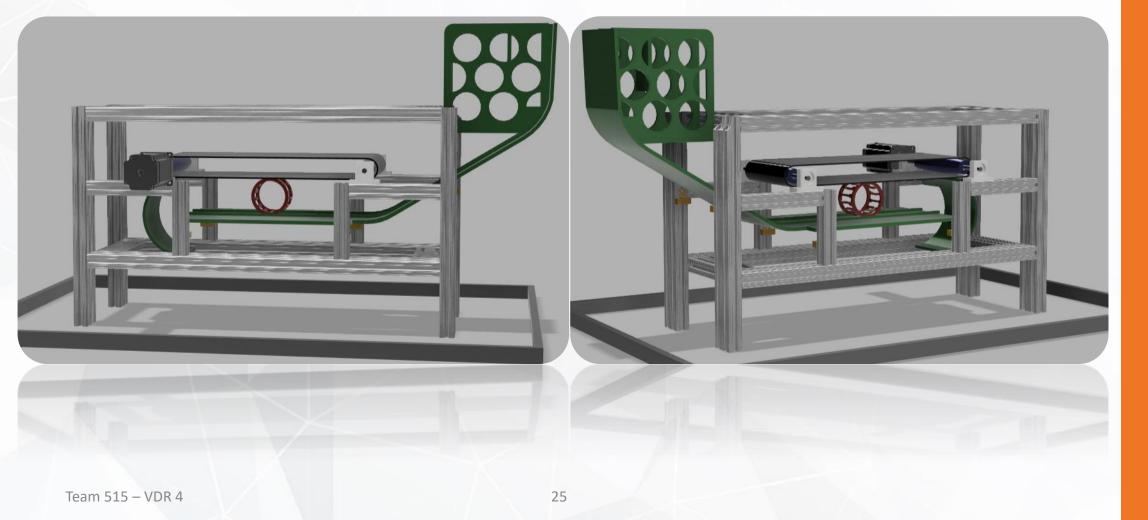
Team 515 – VDR 5

Andrew McClung

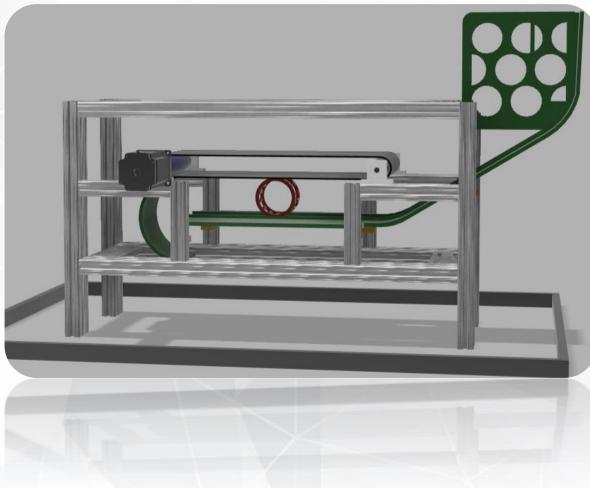

Questions?

FAMU-FSU College of Engineering

Improvements

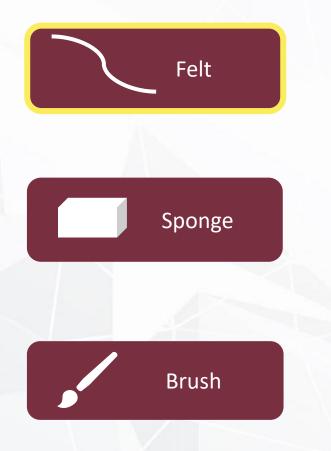


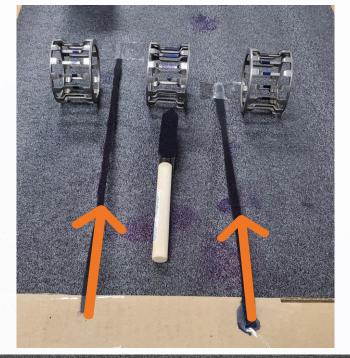
- Copper pipe holds Dykem from reservoir
- Felt pad is replaceable
- Minimizes fumes


Anthony Wuerth

Improved CAD Model

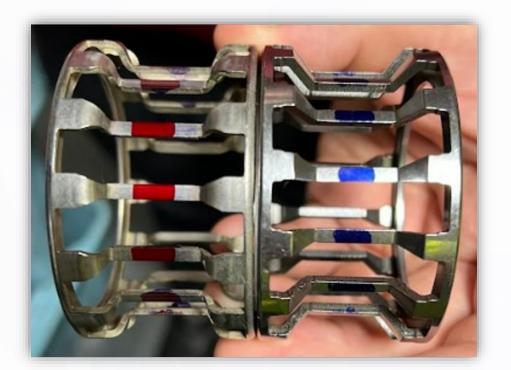
Improvements

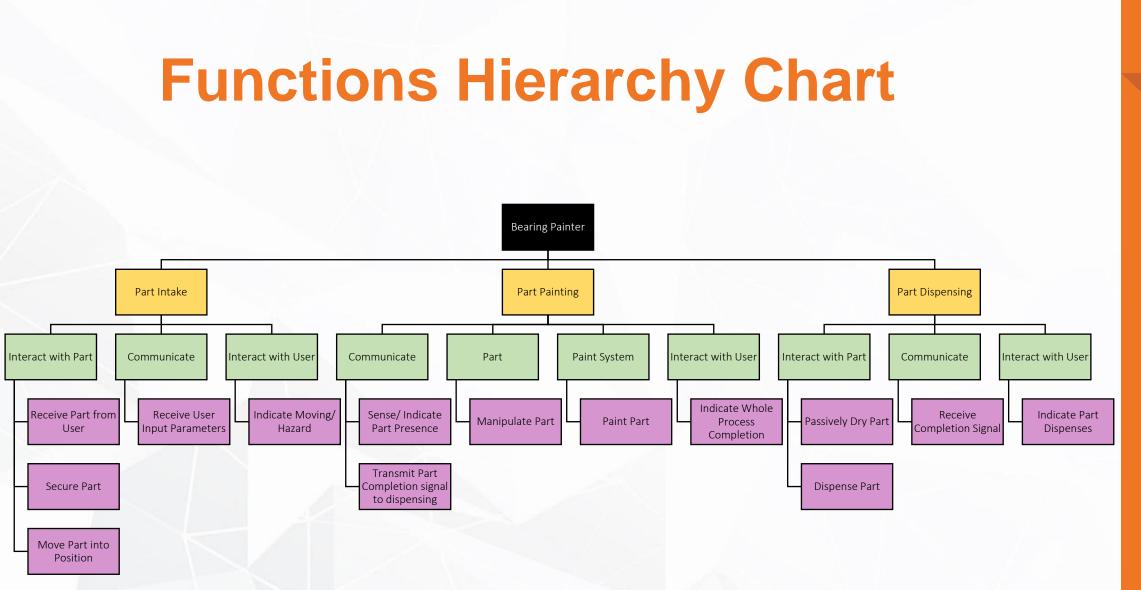



- Hopper addition
 - Removal of pinch point prior to painting
 - Adjustment of painting mechanism

Anthony Wuerth

Testing Procedure




Retainer Painting

Some Customers Require Part Marking To Help Distinguish Similar Parts

- Low Production Runs
- Tedious, Manual Process
 - Operator Pulled From Position
 - Decreased Efficiency

	Binary Pairwise Comparison Chart								
Customer Requirements	1	2	3	4	5	6	7	8	Total
1. Atomated Process	-	1	0	0	0	1	0	1	3
2. Cycle Time	0	-	1	0	0	1	0	1	3
3. Paint Correct Area	1	0	-	1	1	1	1	1	6
4. Fit in Fume Hood	1	1	0	-	0	1	0	1	4
5. Process Range of Sizes	1	1	0	1	-	1	0	1	5
6. Quickly Configurable	0	0	0	0	0	-	0	1	1
7. Use Multiple Colors	1	1	0	1	1	1	-	0	5
8. Indicate Operation Status	0	0	0	0	0	0	1	-	1
Total	4	4	1	3	2	6	2	6	n - 1 = 7

Binary Pairwise Comparison

Function

- Tool to assist in ranking the importance of customer requirements
- Assigns each requirement an importance weight factor
- Requirements and weight factors assist in the development of the House of Quality

Results

The 3 most important requirements were found to be:

- 1. Paint correct area
- 2. Process range of sizes
- 3. Use multiple colors

Engineering Characteristic									
		Engi	neering	Characteri	SUC				
Improvement Direction		↑	-	↑	\downarrow	\uparrow	\downarrow	\downarrow	-
Units		Part/min	mm^2	Diameter	Sqft	Part/Load	%	%	Part/invl
Customer Requirements	Importance Weight Factor	Production Rate	Processing Accuracy	Compatibility	Size	Part Intake Limit	Automatic Operation %	Reliability	Maintenance Interval
1. Atomated Process	3	9		3	9	9	9		
2. Cycle Time	3	3	9	9		9	9	3	3
3. Paint Correct Area	6	1	9	9				1	1
4. Fit in Fume Hood	4			3	9	9			
5. Process Range of Sizes	5	1	9	9	9	3	9		
6. Quickly Configurable	1	3	3	9	3	9	3		
7. Use Multiple Colors	5	3	3		9	3	3	1	3
8. Indicate Operation Status	1	3		1		3	3	3	1
Raw Sco	ore (628)	68	144	157	156	132	120	23	31
Relative V	Veight %	10.83	22.93	25.00	24.84	21.02	19.11	3.66	4.94
Ra	nk Order	6	3	1	2	4	5	8	7

FAMU-FSU College of Engineering

Andrew McClung

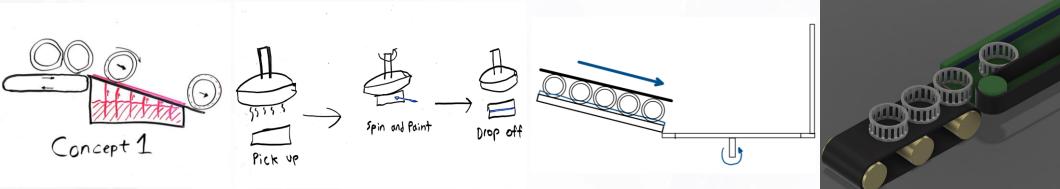
House of Quality

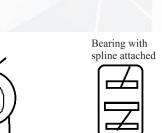
Part Intake Limit

Automatic Operation %

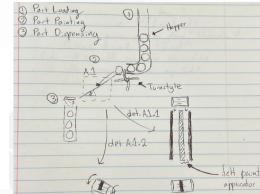
Reliability

Maintenance Interval




					Concepts					
	Engineering Characteristics	RANDBRIG HT RB 60	Linear Processor	Inverted Treadmill	Double Conveyor	Felt Ramp	Electromagnet	Spline	Pore Track	Gravity Ramp
	Compatibility		S	S	_	S	-	S	+	+
1	Size		S	+	S	+	S	S	-	-
	Part Intake Limit	- V	S	+	S	S	S	S	S	S
	Processing Accuracy		S	S	S	-	-	S	S	-
	Automatic Operation %	ΤΨ	S	+	+	S	+	S	S	-
	Total Pluses	<u>п</u> -	0	3	1	1	1	0	1	1
	Total Satisfactory		5	2	3	3	2	5	3	1
	Total Minuses		0	0	1	1	2	0	1	3

		Concepts			
Engineering Characteristics	Linear Procesor	Inverted Treadmill	Double Conveyor	Felt Ramp	Pore Track
Compatibility		S	S	+	-
Size		+	S	-	-
Part Intake Limit	- V	+	+	S	S
Processing Accuracy	5	+	+	-	-
Automatic Operation %	DATUM	+	+	S	S
Total Pluses	-	4	3	1	0
Total Satisfactory		1	2	2	2
Total Minuses		0	0	2	3



Pugh Chart

Cylinder with retractable spline

DATUM

35

				[C] M	atrix			
		Analytical Hierarchy Process	А	А	А	А	А	
2	В	Engineering Charactersitic	Compatibility	Size	Part Intake Limit	Processing Accuracy	Automatic Operation %	Average
	В	Compatibility	1	3.000	3.000	7.000	5.000	3.800
	В	Size	0.333	1	0.333	5.000	0.333	1.400
T	В	Part Intake Limit	0.333	3.000	1	7.000	1.000	2.467
	В	Processing Accuracy	0.143	0.200	0.143	1	0.200	0.337
	В	Automatic Operation %	0.200	3.000	1.000	5.000	1	2.040
		Total	2.010	10.200	5.476	25.000	7.533	10.044
		Average	0.402	2.040	1.095	5.000	1.507	

Concept	Alternative Value
Inverted Treadmill	0.401
Double Conveyor	0.271
Felt Ramp	0.327

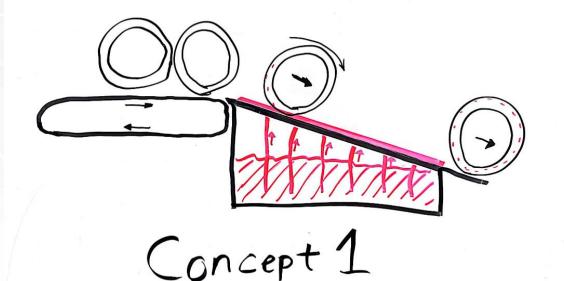
Analytical Hierarchy Process

Function

- Utilizes matrices to compare importance of criteria
- Criteria are Engineering characteristics & design concepts

Results

- Compatibility is the highest weighted engineering characteristic
- Inverted Treadmill with the highest rating of importance on criteria


Concept	Alternative Value
Inverted Treadmill	0.401
Double Conveyor	0.271
Felt Ramp	0.327

Team 515 - VDR 2

Mason Gibson

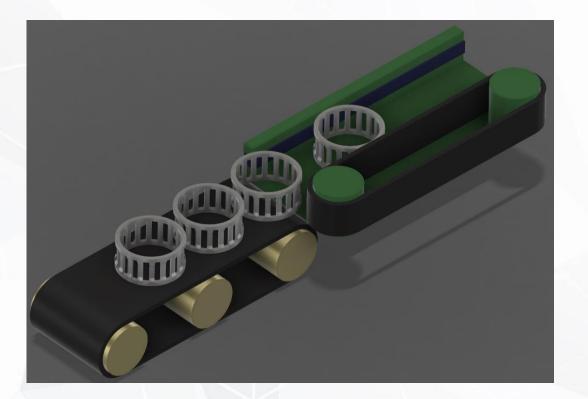
Medium Fidelity Concept 1

Key Features

- Conveyor belt feeds the bearings
- Bearing rolls down a ramp to be painted
- Paint felt strip fed by a reservoir of Dykem underneath

Mason Gibson

High Fidelity Concept 2 (Inverted Treadmill)



Key Features

- Parts are moved along a belt to a surface with Dykem
- Pushed along the Dykem by the bottom of the belt
- Allows for compact design

High Fidelity Concept 3 (Double Conveyor)

Key Features

- Belt brings the parts into the painting system
- One belt moves the parts along while the other side paints
- Benchmarked from a labeling machine

Backup Slides

- This is 10-point
- This is 15–point Times
- This is 20-point
- This is 25–point
- This is 30-point
- This is 35-point
- This is 40-point
- •This is 50-point
- •This is 60–point 43

